800.657.1494

Al Foundations for Software Developers

Course #: AI-300 Duration: 1 day

Prerequisites

Professional experience in software development and familiarity with modem development workflows. No prior Al or machine learning
experience is required.

Details

This course provides software developers with a practical foundation for understanding how Al behaves inside modern development
tools. Rather than focusing on machine learning theory, the course explains how large language models generate code, where they fail, and
how those failures differ from traditional software defects.

Participants learn how Al-assisted coding changes responsibility, review practices, and professional judgment. The course prepares
developers to use tools like GitHub Copilot effectively by understanding their strengths, limitations, and risks before relying on them in real
projects.

After attending this course, students should be able to:

Explain how Al code generation differs from traditional programming tools
Recognize common failure modes in Al-generated code

Evaluate Al-generated code critically rather than accepting it at face value
Understand how Al affects software quality, maintamability, and security
Apply professional judgment when using Al in development workflows

This course is designed for software developers who are beginning to use Al-powered development tools and want to do so responsibly
and professionally. This course assumes participants can read, write, and reason about code, but it does not require prior Al knowledge.

Software Needed

No Al tools, programming environments, or software installations are required for this course, though participants should be comfortable
reading and reasoning about code.

Outline
Al Foundations for Software Developers

¢ Why Al Changes Software Development
o From autocomplete to probabilistic code generation
o How Al differs from compilers, linters, and IDE tools
o Why Al-generated code “looks right”” even when it’s wrong
o Shifts in responsibility and accountability

e How Al Generates Code

https://www.logicalimagination.com
https://www.logicalimagination.com/artificial-intelligence-(ai)/ai-foundations-for-software-developers

High-level overview of large language models
Tokens, context windows, and pattern completion
Why Al does not “understand” code

What training data means for code generation

o O o o

Strengths of Al-Assisted Coding

o Accelerating routine and boilerplate code
Exploring unfamiliar APIs and libraries
Generating examples and scaffolding
Supporting learning and experimentation

o O o

Failure Modes in AI-Generated Code
o Logical errors and incorrect assumptions
o Edge cases and missing constraints
o Qutdated or deprecated APIs
o Overconfidence and fabricated explanations

Reading and Reviewing AI-Generated Code
o Treating Al output as a draft, not an answer
o Techniques for validating correctness
o Recognizing “‘convincing nonsense”
o Knowing when to rewrite instead of patch

Al and Software Quality
o Impact on readability and maintainability
o Consistency with existing codebases
o Avoiding accidental architectural drift
o Long-term cost of unchecked Al usage

Security and Risk Considerations

Common insecure patterns introduced by Al
Dependency and licensing risks

Data leakage and prompt misuse

Why Al-generated code must be reviewed for security

O O O o

Professional Responsibility and Ethics
o Accountability for Al-assisted code
o Attribution and intellectual property considerations
o Using Al responsibly in team environments
o Setting personal and team boundaries

‘When Not to Use Al

High-risk or safety-critical code
Performance-sensitive systems
Security and cryptography

Regulatory and compliance constraints

o O O o

Preparing for AI-Augmented Development

Developing healthy skepticism and discipline
Integrating Al into professional workflows
Preparing for tool-specific training (e.g., Copilot)
Next steps in Al-augmented software development

o
o
o
o

	AI Foundations for Software Developers
	Prerequisites
	Details
	Software Needed
	Outline

