
AI Foundations for Software Developers
Course #: AI-300 Duration: 1 day

Prerequisites

Professional experience in software development and familiarity with modern development workflows. No prior AI or machine learning
experience is required.

Details

This course provides software developers with a practical foundation for understanding how AI behaves inside modern development
tools. Rather than focusing on machine learning theory, the course explains how large language models generate code, where they fail, and
how those failures differ from traditional software defects.

Participants learn how AI-assisted coding changes responsibility, review practices, and professional judgment. The course prepares
developers to use tools like GitHub Copilot effectively by understanding their strengths, limitations, and risks before relying on them in real
projects.

After attending this course, students should be able to:

Explain how AI code generation differs from traditional programming tools
Recognize common failure modes in AI-generated code
Evaluate AI-generated code critically rather than accepting it at face value
Understand how AI affects software quality, maintainability, and security
Apply professional judgment when using AI in development workflows

This course is designed for software developers who are beginning to use AI-powered development tools and want to do so responsibly
and professionally. This course assumes participants can read, write, and reason about code, but it does not require prior AI knowledge.

Software Needed

No AI tools, programming environments, or software installations are required for this course, though participants should be comfortable
reading and reasoning about code.

Outline

AI Foundations for Software Developers

Why AI Changes Software Development
From autocomplete to probabilistic code generation
How AI differs from compilers, linters, and IDE tools
Why AI-generated code “looks right” even when it’s wrong
Shifts in responsibility and accountability

How AI Generates Code

www.logicalimagination.com
800.657.1494

https://www.logicalimagination.com
https://www.logicalimagination.com/artificial-intelligence-(ai)/ai-foundations-for-software-developers

High-level overview of large language models
Tokens, context windows, and pattern completion
Why AI does not “understand” code
What training data means for code generation

Strengths of AI-Assisted Coding
Accelerating routine and boilerplate code
Exploring unfamiliar APIs and libraries
Generating examples and scaffolding
Supporting learning and experimentation

Failure Modes in AI-Generated Code
Logical errors and incorrect assumptions
Edge cases and missing constraints
Outdated or deprecated APIs
Overconfidence and fabricated explanations

Reading and Reviewing AI-Generated Code
Treating AI output as a draft, not an answer
Techniques for validating correctness
Recognizing “convincing nonsense”
Knowing when to rewrite instead of patch

AI and Software Quality
Impact on readability and maintainability
Consistency with existing codebases
Avoiding accidental architectural drift
Long-term cost of unchecked AI usage

Security and Risk Considerations
Common insecure patterns introduced by AI
Dependency and licensing risks
Data leakage and prompt misuse
Why AI-generated code must be reviewed for security

Professional Responsibility and Ethics
Accountability for AI-assisted code
Attribution and intellectual property considerations
Using AI responsibly in team environments
Setting personal and team boundaries

When Not to Use AI
High-risk or safety-critical code
Performance-sensitive systems
Security and cryptography
Regulatory and compliance constraints

Preparing for AI-Augmented Development
Developing healthy skepticism and discipline
Integrating AI into professional workflows
Preparing for tool-specific training (e.g., Copilot)
Next steps in AI-augmented software development

	AI Foundations for Software Developers
	Prerequisites
	Details
	Software Needed
	Outline

