
Building MCP-Based AI Systems with Python
Course #: AI-203 Duration: 3 days

Prerequisites

Completion of AI Foundations & Risk for IT Professionals, Designing Reliable AI Workflows & Interactions, and AI Architecture &
Agentic Systems, or equivalent experience designing AI workflows and agentic system architectures. Strong working knowledge of
Python is required.

Details

This course teaches participants how to design, build, and deploy AI systems using the Model Context Protocol (MCP) and Python.
Rather than building fragile, prompt-driven demos, participants learn how to expose structured tools and backend services that AI
systems can use safely and reliably.

Participants implement an MCP server, define schema-driven tools, integrate data access layers, and apply best practices for validation,
error handling, and deployment. The course emphasizes structure, safety, and maintainability, enabling teams to move from
experimental AI use to production-ready systems.

After attending this course, students should be able to:

Explain the role of MCP in agentic AI systems
Build an MCP server using Python
Define schema-driven tools with clear input and output contracts
Integrate backend data sources and services safely
Apply validation, error handling, and idempotency strategies
Connect MCP servers to AI clients such as Claude Desktop
Package, version, and distribute MCP-based systems

This course is designed for technical professionals responsible for implementing AI systems that integrate safely and reliably with real
organizational data and services. This course is hands-on and implementation-focused and assumes prior experience with Python
development.

Software Needed

Participants must have a laptop or desktop computer (Windows, macOS, or Linux) with Python 3.10 or later installed, the ability to
create virtual environments, install Python packages, and run local development servers. Access to an MCP-compatible AI client (such as
Claude Desktop) is required. Full system requirements are provided prior to the course.

Outline

Building MCP-Based AI Systems with Python

MCP and Agentic Architecture Fundamentals
Why MCP exists

www.logicalimagination.com
800.657.1494

https://www.logicalimagination.com
https://www.logicalimagination.com/artificial-intelligence-(ai)/building-mcp-based-ai-systems-with-python

LLMs as system actors rather than chat interfaces
How MCP changes AI system design
Real-world examples of tool-using agents

MCP Core Components in Depth
MCP servers, tools, and resources
Schema-driven interfaces
JSON Schema vs dynamic data structures
Why explicit schemas matter in Python systems

Structuring Data with Pydantic
Using Pydantic for schema definition and validation
Enforcing input and output contracts
Handling optional and constrained fields
Preventing runtime ambiguity

Setting Up the MCP Server (Python)
MCP server lifecycle
Virtual environments and dependency management
Minimal, maintainable project structure
Logging and debugging strategies

Designing and Implementing MCP Tools
Tool functions vs tool classes
Mapping tools to backend capabilities
Input validation and output enforcement
Exception handling and error reporting
Idempotency in dynamic systems

Building a Backend Domain Model
Domain modeling in Python
Separating business logic from MCP interfaces
Designing for testability and reuse

Data Access and Persistence Options
In-memory data structures
SQLite for lightweight persistence
SQLAlchemy integration
Asynchronous data access considerations

Exposing CRUD Operations via MCP
Tool vs resource design decisions
Read-only vs mutating operations
Guardrails for destructive actions
Aligning CRUD exposure with governance

Prompting and Sampling for Reliable Agents
Prompt definitions as files or constants
Sampling strategies and helper functions
Managing multi-step agent workflows
Reducing variability and unintended behavior

Integrating with AI Clients
Connecting MCP servers to Claude Desktop
CLI execution and configuration
Environment variables and secrets management
Debugging runtime behavior

Testing, Safety, and Reliability
Testing MCP tools and schemas
Failure injection and edge cases
Observability and logging
Safe iteration during development

Packaging, Distribution, and Versioning
Python packaging with pyproject.toml
Semantic versioning strategies
Publishing to PyPI or internal repositories
Managing breaking changes

Operational Considerations
Deployment models
Configuration management
Monitoring and maintenance
Supporting MCP-based systems over time

Summary and Next Steps
Key implementation principles
From prototype to production
Aligning MCP systems with governance
Preparing for continued evolution of AI systems

	Building MCP-Based AI Systems with Python
	Prerequisites
	Details
	Software Needed
	Outline

